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Age-related hearing loss (ARHL) is a common problem for older adults, leading to

communication difficulties, isolation, and cognitive decline. Recently, hearing

loss has been identified as potentially the most modifiable risk factor for dementia.

Listening in challenging situations, or when the auditory system is damaged, strains

cortical resources, and this may change how the brain responds to cognitively

demanding situations more generally. We review the effects of ARHL on brain

areas involved in speech perception, from the auditory cortex, through attentional

networks, to the motor system. We explore current perspectives on the possible

causal relationship between hearing loss, neural reorganisation, and cognitive

impairment. Through this synthesis we aim to inspire innovative research and

novel interventions for alleviating hearing loss and cognitive decline.

The Ageing Ear: Tired of Listening?

ARHL, or presbycusis, is characterised by gradually developing high-frequency hearing loss,

often accompanied by poor speech discrimination, andmay begin to surface in the fourth decade

of life [1]. The prevalence of ARHL increases with age, affecting N40%of people over 50 years old,

rising to ~71%of people over 70 years [2]. For most people this is a relatively unremarkable part of

the ageing process (Box 1), but some individuals with ARHL experience effort and difficulties in

understanding speech, hindering communication and socialisation [3]. Increased listening effort

may lead older adults to avoid social interaction, exacerbating loneliness and depression, and re-

ducing well-being [4]. Recent research further shows that hearing loss is associated with cogni-

tive decline and dementia [5,6]. However, although there is reasonable evidence for hearing loss

as amarker for risk of cognitive decline, it is not yet clear whether there is a causal effect of hearing

loss on cognitive decline. Collating the most recent evidence on how ARHL affects the brain pro-

vides valuable information on the possible underlying mechanisms and causal relationships be-

tween hearing loss, neural changes, and dementia.

This review discusses the physiology of ARHL, from the peripheral auditory system to the auditory

cortex, and to global neural changes that accompany ARHL. We focus on the impact of these

cortical changes on cognitive functioning during ageing, and explore the evidence for a possible

causal relationship between ARHL-related changes in neural functioning and cognitive decline.

The Peripheral and Subcortical Auditory Systems in Age-Related Hearing Loss

ARHL is attributed to sensory, metabolic, or neural changes in the peripheral auditory system

which affect hearing ability. Sensory ARHL is characterised by degeneration of outer and inner

hair cells within the cochlea, of which the inner cells are responsible for the transduction of audi-

tory signals. Atrophy originates in the basal end of the cochlea, and over time progresses to the

apex. Basal atrophy manifests in the high-frequency hearing loss typical of sensory ARHL [7]. It

has been suggested that degeneration of basal sensory receptor cells is often a consequence

of accumulated environmental noise exposure rather than of ageing [8]. Sensory ARHL is quan-

tifiable using pure-tone audiometry. The audiogram showing sensory ARHL will display normal
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hearing thresholds in the lower frequencies, and a steep increase in thresholds at higher frequen-

cies [9]. However, older adults with similar pure-tone thresholds can differ in their ability to under-

stand degraded speech, even after the effects of age are controlled for [10]. The effect of ARHL

on the wider auditory periphery, auditory cortices, and nonauditory neural systems has a greater

effect on communication owing to increased difficulty with speech perception.

Metabolic (or strial) ARHL is characterised by atrophy of the stria vascularis, on the outer wall of

the cochlear duct, which is responsible for metabolic processes in the cochlea. Degeneration

of this structure decreases the endocochlear potential (EP), impairing the EP-dependent cochlear

amplifier. The entire cochlea is affected, but the amplifier in particular is necessary for the percep-

tion of high-frequency sounds [11]. The audiogram in metabolic ARHL displays a constant

hearing loss at lower frequencies, with a gradual increase in threshold at higher frequencies

owing to the loss of EP [9,12]. The flat loss at lower frequencies and gradual sloping loss at higher

frequencies in metabolic ARHL, compared with the normal lower-frequency thresholds and

drastic sloping loss at higher frequencies in sensory ARHL, is key in differentiating between

these two subtypes of hearing loss [9].

Neural ARHL is characterised by atrophy of the spiral ganglion cells, the first afferent neurons in

the neural pathway from the ear to the brain. The audiogram is not affected until a critical number

of cells have degenerated (80–90%) [13]. This type of hearing loss may precede sensory hair loss

and is accompanied by a dramatic decrease in speech discrimination ability [14]. This neural

degeneration may provide insight into why older adults with similar hearing acuity (measured by

pure-tone audiometry) differ in their speech-in-noise perception [15] (Figure 1).

Auditory perception involves not only peripheral ‘hearing’ and the transduction of sounds but also

decoding and comprehension of the auditory message, which occurs in higher brainstem and

cortical regions. Studies suggest that ageing may impact on supra-threshold auditory processes

(which cannot be identified by a clinical audiogram), including temporal coding, which involves the

synchronisation of neural firing to the temporal fine structure or temporal envelope of sound [16].

Animal models suggest that this temporal coding may be affected by age-related cochlear

synaptopathy – the loss of connections between the sensory hair cells and the auditory nerve

[17]. Brainstem temporal processing may also decline owing to age-related demyelination [18]

and a reduction in neural inhibition [19]. Brainstem neural function can be measured using the

auditory brainstem response (ABR), a measure of synchronous activation of successive nuclei

Glossary

Anterior cingulate cortex (ACC): the

anterior part of the cingulate cortex

within the cerebral cortex. The ACC is

thought to be involved in a multitude of

complex cognitive processes.

Motor evoked potential (MEP): an

electrical potential measured from

peripheral muscles elicited by

noninvasive magnetic stimulation of the

motor cortex. The MEP is measured

using electrodes placed on the skin,

which record the electrical activity in the

muscle (a technique called

electromyography, EMG).

Pure-tone average (PTA): the

outcome measure of hearing acuity,

defined as the average of hearing

thresholds at specified frequencies. PTA

is obtained using pure-tone audiometry

testing. During the test, pure tones of

sound are presented to each ear,

typically at frequencies ranging from 500

to 4000 Hz. The level of each tone is

varied until the level is found which is

barely perceptible. At each frequency,

0 dB hearing level (HL) is defined as the

average for young people with normal

hearing. Individuals with averages above

20 dB HL would qualify as having mild

hearing loss.

Transcranial magnetic stimulation

(TMS): a noninvasive brain-stimulation

technique that uses a rapidly changing

magnetic field to induce an electrical

current (via electromagnetic induction) in

a specific brain region.

Box 1. Defining ARHL in Terms of Hearing Thresholds

Hearing thresholds are usually measured using pure-tone audiometry, which estimates the lowest detectable levels of pure

tones at a range of frequencies. The pure-tone average (PTA) is the average of hearing-threshold levels at frequencies of

500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz in the individual’s better ear. The World Health Organisation (WHO) defines the

onset of mild hearing impairment as a PTA of N20 dB HL [85]. Further hearing impairment categories are defined at sub-

sequent 15 dB steps; a hearing threshold of N35 dB HL would quantify moderate hearing loss, N50 dB HL for moderately

severe loss, N65 dB HL for severe loss, and N80 dB HL for profound hearing loss [86]. A person with normal hearing can

hear tones in the frequency range 500–4000 Hz presented at 20 dB HL or softer. ARHL presents following cumulative

effects of ageing on the sensory system [87] (Figure I).

Pure-tone audiometry remains the primary, gold-standard method for quantifying ARHL in practice and research. It is

employed to understand changes in cochlear function and structure. However, to understand hearing ability more gener-

ally, it is also necessary to evaluate an individual's ability to function and participate in daily life activities [76]. Pure-tone

thresholds do not account well for speech comprehension, which is a major complaint in ARHL [75]. There are numerous

potential causes of damage to the peripheral and central auditory system, which can be categorised into various subtypes

of ARHL. The damages can manifest not only in high-frequency threshold elevations but also in the perception of supra-

threshold sounds [75].
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within the auditory pathway in response to a brief click or tone. Amplitudes of ABR waves are

reduced in older listeners [20]. The frequency-following response (FFR) is a sustained brainstem

potential that reflects neural synchronisation to the frequency components of a sound wave. The

FFR can be used to measure the temporal precision of subcortical neural coding of musical pitch

and speech [21]. Research has demonstrated stronger FFR responses in younger compared

with older listeners in response to speech stimuli [22,23], particularly speech in noise [24]. It is

possible that age-related supra-threshold temporal processing deficits in the brainstem and
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Figure I. Graphic of High-Frequency Threshold Elevation as a Function of Age and Gender On a Pure-Tone

Audiogram. The cumulative effects of ageing and lifestyle affect the perception of higher-frequency sounds, meaning that

the dB level of the sound needs to be increased for it to be successfully perceived. Data sourced from the International

Organization for Standardization document on acoustics [90].
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midbrain account in part for the speech-in-noise perception difficulties facing older listeners,

which are not well predicted by pure-tone audiometry [10].

When the auditory periphery is damaged, the cochlea is less effective in converting sound into

neural activity. A reduction in the precision of subcortical neural coding can also impact on the

representation of sounds. The resultant auditory signal is therefore diminished, and this may

significantly affect how the brain processes this information. One might hypothesise that this

altered neural processing may in turn affect nonauditory cognitive processes as a result of

atrophy, or cortical reorganisation, changing the way in which resources in the brain are allocated

during perception and comprehension of speech.

The Auditory Cortex in Age-Related Hearing Loss

The auditory cortex encompasses several brain regions in the temporal lobes which are

organised in a functional hierarchy for the processing of sound. The primary auditory cortex, at

the bottom of this functional hierarchy located on Heschl's gyrus, receives direct information

from the cochlea via the ascending auditory pathway. The wider auditory cortex, extending

from Heschl's gyrus to the superior temporal gyrus, receives projections from the primary

auditory cortex and is involved (among other functions) in sound localisation, as well as in integra-

tion with other sensory networks.
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Figure 1. There Are Three Main Types of Age-Related Hearing Loss (ARHL) That Manifest in Different Physical

Characteristics in the Peripheral Auditory System. (A) A diagram of the cochlea, indicating the tonotopic organisation of

the transduction of sound. (B) A diagram of a cross-section of the cochlea. Labels indicate the various atrophies within the

cochlea and the types of ARHL that manifest as a result, and how this can, or cannot, be identified by standard

audiometric testing. Abbreviation: PTA, pure-tone average.

Trends in Neurosciences

Trends in Neurosciences, October 2020, Vol. 43, No. 10 813

Image of Figure 1


Anatomical Changes

Evidence indicates that older adults with hearing loss show a constellation of changes in primary

auditory cortex. For example, dysfunctional neurotransmission as a result of decreased GABA

levels has been observed in older adults with hearing loss compared with individuals with normal

hearing [25]. However, there is evidence for a general age-related decline in GABA concentration

in the auditory cortex that is independent of hearing loss [26]. As well as potential defective

neurotransmission, there is evidence that diminished grey matter volume in the primary auditory

cortex is associated with poorer hearing [27]. However, global decreases in grey matter volume,

as well as cortical thinning and increased cerebrospinal fluid, are neural characteristics of general

ageing [28,29]. An important question is whether deprivation of auditory input caused by ARHL

exacerbates the brain atrophy typical of ageing, and whether this has consequences for cortical

organisation. Studies provide evidence for a link between changes in brain morphology and

ARHL (assessed using audiometric thresholds), including cortical thinning [30] and reduced

grey matter volume in the auditory cortices [31,32]. There are two proposed explanations for

the changes in brain morphology in older adults who display age-related hearing threshold

elevations. The first is that there is a direct causal relationship between auditory impairment and

declines in brain volume owing to auditory deprivation (sometimes referred to as the auditory

deprivation hypothesis) [32]. The second is that ageing leads to concurrent declines in the

auditory periphery and the CNS [33,34].

One longitudinal study provides evidence supporting the idea of a causal relationship between

ARHL [quantified as a pure-tone average (PTA, see Glossary) of N25 dB hearing level (HL) in

older adult participants] and neural atrophy in support of the auditory deprivation hypothesis.

Differences in brain volume between older adults with normal versus clinically significant pure-

tone hearing loss were not present in a baseline magnetic resonance imaging (MRI) scan.

However, 6.4 years later, those with pure-tone hearing loss showed an accelerated decline in

brain volume, especially in the right temporal lobe [35]. Nevertheless, others have contested the

auditory deprivation hypothesis. Indeed, a more recent longitudinal study found no evidence that

clinically significant pure-tone hearing loss affected brain morphology [33]. These inconsistent

findings could be explained by the different longitudinal time-windows employed – 6.4 years in

the former study compared with a shorter window ranging from ~1.3 to 5 years in the latter. It is

possible that there is a causal relationship between clinically significant pure-tone hearing loss and

reduced grey matter in the auditory cortex, but only presents after a longer time-period (N5 years).

Functional Changes

In addition to structural changes in the cortex, older adults with clinically significant pure-tone

hearing loss also display functional differences in auditory processing compared with younger

adults with normal pure-tone thresholds. For example, functional MRI (fMRI) studies to determine

age-related changes in the auditory cortex showed that the older adults with pure-tone threshold

elevations exhibited increased activation in response to pink noise (i.e., 1/f noise) in the temporal

lobes, particularly in the right hemisphere, compared with younger adults with normal audiometric

thresholds who showed reduced activation and left lateralisation [36]. The authors suggested that

this activation may be due to reduced inhibition associated with ageing, or potentially reflects a

compensatory mechanism for elevated audiometric thresholds [36]. However, there were no sig-

nificant differences in activation between older adults with mild (audiometric thresholds N20 dB

HL at frequencies ≥4000 Hz) versus moderate (audiometric thresholds N20 dB HL at frequencies

≥1000 Hz) pure-tone hearing loss. The lack of an effect of hearing-loss severity on neural activity

may cast doubt on the existence of a causal relationship between pure-tone hearing loss and

neural changes. Other researchers who usedmore complex auditory stimuli, consisting of mono-

syllabic words, also found similar effects of age on auditory cortex activity, but age-related pure-
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tone hearing loss (PTA 26–40 dB HL) did not significantly affect activation [37]. These data can be

interpreted to support the theory that general ageing, or indeed other subtypes of hearing loss not

identified by the audiogram, rather than clinically significant pure-tone hearing loss, leads to

functional changes in the auditory cortex.

The perception, and particularly comprehension, of auditory information is reliant on integration

among brain networks to interpret auditory stimuli. Studies have found important differences in

functional connectivity among brain areas involved in auditory processing in older adults with

ARHL, which may hinder speech perception [38]. Specifically, findings show reduced connectivity

between visual and auditory sensory cortices in ARHL [39], as well as in the attention and default

mode networks [40]. These data suggest that, in individuals with hearing loss, there are changes

in the organisation of the cortical networks that support speech perception.

Nonauditory Cortical Reorganisation

In the following section of this review cortical reorganisation observed in ARHL is explored further.

This section focuses on three brain networks that are known to support auditory perception – the

attentional, visual, and motor networks. Evidence indicates that ARHL not only affects auditory

brain areas but also nonauditory regions. This is because nonauditory regions are potentially up-

regulated to support speech perception after hearing loss. It is possible that this suggested

reorganisation of resources causes complications for cognitive and neural functioning.

Attentional Networks

The cingulo-opercular network is suggested to be of importance for speech processing in both

normal-hearing and hearing-impaired individuals [41–43]. The cingulo-opercular network involves

several brain areas, including the anterior insula, the anterior cingulate cortices, and the thalamus,

that are thought to be involved in attention, which is advantageous for speech perception [43,44].

Morphological data indicate that individuals with ARHL display reduced volume in the anterior

cingulate cortex (ACC) [45]. Research has investigated the relationship between ACC atrophy

and the function of the cochlear amplifier – the main component of which is the outer hair cell that

is responsible for sensitive frequency resolution. Dysfunction is measured by assessing the outer

hair cell function of the cochlea receptor [45]. Greater atrophy of the ACC was observed in

individuals with ARHL (PTA N20 dB HL) who also displayed cochlear amplifier dysfunction

(assessed using distortion-product otoacoustic emissions, a type of sound generated by the

outer hair cells), and this atrophy was related to greater memory impairments [45].

Evidence also suggests increased functional connectivity between auditory cortex and cingulo-

opercular network in resting-state fMRI in ARHL, after controlling for variance in both age and

cognitive functioning [46]. This provides some insight into potential compensatory neural activa-

tion associated with ARHL. It has been suggested that impaired auditory processing in ARHL

leads to more effortful listening, which depletes the limited resource capacity available for both

listening and nonauditory cognitive functions [47]. Researchers have proposed that activation

of neural networks involved in effortful listening could contribute to the observed neural degener-

ation of these areas in ARHL, including for instance degeneration due to glutamate excitotoxicity

of cingulate neurons [45].

Visual Networks

Older adults with hearing loss (mean PTA 38.4 dB HL) display a reduced ability to suppress

activity in other sensory brain areas during auditory processing than those without hearing loss

[48]. For example, increased visual cortex activation occurs during auditory word-recognition

tasks when intelligibility is decreased (due to increased background noise) [48]. Furthermore,
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there is evidence from resting-state fMRI for increased connectivity between auditory and visual

cortices in ARHL (defined in terms of high frequency loss using PTA) [44]. It is likely that increased

visual activation works to support the auditory system during interpretation of degraded auditory

information. Individuals with ARHL also show increased activation in auditory areas during the

presentation of visual stimuli [49], further highlighting the level of cortical reorganisation among

visual and auditory areas associated with ARHL.

Motor Networks

There is accumulating evidence that the articulatory motor cortex is involved in speech perception

in young adults, particularly when speech perception is challenging [50]. It is possible that, when

listening becomes more demanding, the individual relies on integration across numerous brain

areas to understand the auditory message; for example, by recruiting the motor cortices to

provide motor representations of speech. However, it is unclear how motor networks are utilised

for speech perception in older adults with hearing loss. Two hypotheses have been suggested to

account for auditory–motor integration during speech perception in ARHL. First, the motor com-

pensation hypothesis suggests that activation of the motor networks compensates for impaired

auditory processing in ARHL [51]. This hypothesis assumes that the articulatory motor cortex is

upregulated during speech perception in persons with auditory deficits, and that this process

compensates for impaired auditory function to aid speech perception. Second, the motor-

decline hypothesis suggests that the impaired auditory periphery provides a reduced input to

the auditory cortex, and consequent deficits in auditory processing reduce the input to the

articulatory motor cortex [52].

Researchers have used brain stimulation, specifically transcranial magnetic stimulation

(TMS) in combination with electromyography to measure motor evoked potentials (MEPs)

recorded from the tongue, to investigate age- and hearing-related differences in excitability of

the motor cortex [52]. The authors found that excitability of the articulatory motor cortex, that is

involved in tongue control, was significantly reduced in older adults with ARHL compared with

older and younger adults with normal hearing, in support of the motor decline hypothesis [52].

These results suggest that deficits in the auditory system may reduce the input available to the

motor cortex. This provides evidence for a decline in auditory–motor processing that is not only

associated with age-related changes in neural functioning but is specifically associated with hear-

ing loss. In contrast to these findings supporting the motor decline hypothesis, fMRI studies have

provided support for the alternative motor compensation hypothesis. Specifically, fMRI data indi-

cate that older adults have increased activation of frontal speech motor areas in a listening task at

signal-to-noise ratios ranging from −12 dB to 8 dB, comparedwith younger adults. The increased

activity also correlated with improved performance on the listening task in older adults [51].

A possible explanation for the discrepancies between these studies could stem from their meth-

odological differences. In part, in the fMRI study there was no comparison between older adults

with and without hearing loss [51]. Although listening demand was manipulated artificially by

changing the signal-to-noise ratio, it is not possible to draw definitive conclusions about the

effects of ARHL on motor activation. Furthermore, the different methods, TMS in combination

with electromyography and MEPs, as opposed to fMRI [blood oxygen-level dependent (BOLD)

signal], reflect different types of neural activation. MEPs are signals recorded from peripheral mus-

cles that quantify the cortical excitability of the motor cortex at the time of brain stimulation,

whereas the BOLD signal provides a more indirect measure of neural activation, and is influenced

by changes in cerebral blood flow, volume, and oxygen extraction. Because of these differences,

MEPs may be more reflective of momentary neural activity, whereas fMRI data reflect activation

over a longer time-period. The fMRI data also showed increased recruitment of frontal regions,
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as well as motor areas, during listening [51]. This may suggest generalised recruitment of com-

pensatory cognitive resources as opposed to specific motor compensation. Indeed, cognitive

compensation is a widely recognised model in the context of cognitive ageing. There is evidence

for cognitive compensation and neural upregulation across numerous sensory and motor

domains [53], including sensorimotor ageing in Alzheimer’s disease [54].

Taken together, these findings indicate that the sensory deprivation associated with ARHL

influences brain structure, function, and typical neural resource allocation. These changes may

influence the cognitive and neural resources available to individuals with ARHL. It seems reason-

able to hypothesise that changes in resource allocation may in turn affect daily cognitive

processes and functioning beyond auditory processing.

The Relationship between Auditory and Cognitive Impairment

In recent years, the association between ARHL and cognitive decline has gained international

recognition among leading medical organisations, who have identified ARHL as the largest

potentially preventable risk factor for dementia [6,55]. Cumulative data from large cohort studies

show that ARHL is associated with an increased rate of cognitive decline and an increased risk

of developing dementia, and the likelihood increases with the severity of hearing loss [56–59].

These developments underscore the need for research efforts directed towards understanding

the causal relationship between the damaged auditory system, neural changes observed in

ARHL, and cognitive decline. In doing so, researchers can identify possible mechanisms underlying

the association between hearing loss and increased cognitive decline, and these may inform

avenues for early intervention. There are three dominant hypotheses in the ARHL and cognitive

decline literature: (i) The common cause hypothesis, (ii) the information degradation hypothesis,

and (iii) the sensory deprivation hypothesis [5,60,61], which are discussed in the following sections.

The Common Cause Hypothesis

The common cause hypothesis suggests that the comorbid manifestation of cognitive decline

and ARHL is attributable to a common neurodegenerative pathology. This hypothesis is

supported by evidence of parallel changes in several perceptual and cognitive domains in older

adults; for example, reduced cognitive decline and reduced visual acuity [62]. In addition, the

brain atrophy observed in both ageing and ARHL [26,33] may suggest that the concurrent

manifestation is due to biological ageing which affects global functioning. However, there is also

evidence that supports a causal relationship in which ARHL exacerbates cognitive decline in ageing:

both the information degradation and sensory deprivation hypotheses support this view.

The Information Degradation Hypothesis

The information degradation hypothesis postulates that degraded auditory input, as a result of the

impaired auditory periphery, places an increased demand on limited processing resources.

Numerous models of working memory and cognitive resources share the common idea that

these information processing resources are limited in the amount of information that can be

attended to, held in memory, and used at any particular time [63]. Situations wherein speech

quality is degraded by environmental noise, or hearing loss, increase the ‘listening effort’ for

processing and comprehending the auditory signal. Therefore, limited cognitive resources are

diverted from other cognitive tasks towards effortful listening [64,65], resulting in depleted cogni-

tive resources. This resource reallocation has detrimental effects on cognitive functions, which

could theoretically lead to cognitive decline [66]. Evidence suggests that older adults experience

more effort during listening than younger adults, as measured using a dual-task paradigm in

which poorer performance on the secondary task indicates increased effort allocated to difficult

listening [67]. The findings suggest that, when listening is more difficult, it requires additional
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cognitive resources to cope with the demand, which means that resources for other cognitive

processes are depleted. Further evidence in support of this hypothesis comes from studies on

the effects of hearing aids which help to restore auditory perception and thus reduce cognitive

load. For example, a 6month hearing aid intervention was found to significantly improve both per-

ceived hearing disability and memory performance [58]. This hypothesis has also been explored

as a ‘cognitive load’ hypothesis by other researchers [5,68].

The Sensory Deprivation Hypothesis

The sensory deprivation hypothesis shares some conceptual points with the information degrada-

tion hypothesis, but it distinctively emphasises that chronic reallocation of cognitive resources

towards auditory perception over time owing to long-term sensory deprivation in ARHL leads to

cognitive decline [60,66]. This hypothesis highlights that this extended deprivation leads to

compensatory cortical reorganisation and neural alterations which hinder general cognitive and

emotional processes in favour of auditory perception. Evidence supports the idea of cortical alter-

ations in ARHL, including increased reliance on frontal brain regions during speech perception

[51,69], as well as reduced grey matter in the auditory cortex with decreased hearing ability [33].

Researchers have expanded on the sensory deprivation hypothesis and have suggested that,

although deprivation affects cognition directly through inadequate sensory input, it may also affect

cognition indirectly through decreased socialisation and communication, or increased depression

[70,71]. The hypothesis proposes that reduced social interaction associated with social isolation

and depression may mediate the causal relationship between hearing loss and cognitive decline

[71,72]. There is a significant association between depressive symptoms in those with ARHL,

increased social isolation, and reduced quality of life [4,71,73]. In line with this perspective, the

neural changes that result from ARHL, such as decreased ACC activation, may directly affect

emotion and mood regulation [74]. Evidence also indicates that ACC volume correlates with

depressive symptoms in individuals with ARHL [45]. Researchers also suggest that ageism and

the stigma associated with ARHL and ageing may exacerbate depressive symptoms and reduce

social interactions as a result of embarrassment or decreased self-perception of ability [75].

Concluding Remarks and Future Perspectives

In this review we have examined the evidence for the effects of ARHL on auditory and nonauditory

brain areas, and the impact of these cortical changes on cognitive functioning during ageing. We

explored changes in the peripheral and subcortical auditory system, the auditory cortex, as well as in

attentional networks and the motor system. We also discussed current perspectives on the potential

causal relationships between hearing loss, neural reorganisation, and cognitive impairment.

Owing to the potential life-changing impact of understanding the relationship between ARHL and

dementia, it is essential to invest in research using methods that can determine causality. This

should focus on the causal relationship between peripheral auditory demand, cortical

reorganisation, and cognitive decline (see Outstanding Questions). There are limitations with

the quantification of both hearing loss and cognitive ability in the current literature, and these

lead to ambiguity in interpretation of the relationship between hearing loss and cognitive decline.

ARHL is frequently quantified using pure-tone audiometry, which does not capture the difficulties

older adults experience with speech in noise, or neural ARHL. Thismay lead to underestimation of

the link between hearing loss and cognitive decline if the full effect of hearing loss on communica-

tion, and on the ability to function in daily life, is not captured [76]. Incorporating tests of speech

understanding in noise into standard audiometric assessments may prove valuable in capturing

speech understanding, as well as hearing acuity. Capturing the extent of communication difficul-

ties in ARHL may help us to understand the potential contribution of such difficulties to cognitive

Outstanding Questions

ARHL has been associated with

increased risk for cognitive decline. Is

there a causal link between the two?

If so, what are the crucial causal

factors and mediators that connect

ARHL and cognitive decline?

Which, if any, additional cortical

resources (e.g., motor cortices or

attentional networks) are recruited to

compensate for impaired auditory pro-

cessing in ARHL?

Does potentially compensatory cortical

reorganisation have a detrimental

effect on cognitive functioning, owing

to reallocation of cognitive resources

towards speech perception?

Can interventions that focus on

supporting potential compensatory

cortical resources improve speech

perception in noise, or cognitive

function, in ARHL?
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function in ageing. There is evidence to suggest that extending the frequency range of clinical

audiometry to assess hearing acuity above 8000 Hz may be beneficial in predicting ARHL in

early life [77]. Furthermore, this extended high-frequency hearing acuity may be related to the

ability to understand speech-in-noise in older adults [77,78].

It is also important to note that undiagnosed or untreated hearing loss may result in the misdiagnosis

or overestimation of the level of cognitive impairment [5]. The source of this misdiagnosis could be

reliance on verbal administration of cognitive assessments, which depends upon auditory processing.

Therefore, it is possible that individuals with hearing loss misunderstand, or cannot fully hear the task

instructions, causing them to perform poorly and result in a misdiagnosis of cognitive decline. Indeed

research shows that, when the audibility of test items is reduced, or when noise exists in the testing

environment, the scores on cognitive assessments are poorer [79–81]. Because listening with

auditory impairment is effortful, older adults with hearing loss may perform worse on these auditory-

based cognitive assessments because more cognitive resources are directed towards listening,

leaving fewer resources available for the cognitive processing required to perform adequately. The

hearing-dependant subtests within tests of cognitive function may significantly affect their sensitivity

and specificity as a screening tool [82]. Research shows that omitting the hearing-dependant subtests

in one example of these cognitive tests (the Montreal cognitive assessment) reduces the sensitivity in

diagnosing mild cognitive impairment; this points at the potential consequences of testing individuals

with untreated hearing loss, or testing in a noisy environment, on the accuracy of the these cognitive

screening measures [82]. Of note, however, the relationship between hearing loss and cognitive

decline has been demonstrated even when nonauditory tasks are used to quantify cognitive abilities

[83,84] (Box 2).

As the population agesmore rapidly than ever, the effects of hearing loss and cognitive decline on

well-being and health resources have never been a more crucial matter. Research into the neural

effect of hearing loss, and on the causal links between cortical reorganisation and cognitive

decline, may prove invaluable in informing future intervention strategies for both ARHL and asso-

ciated health issues. By identifying potential mediators or mechanisms underlying the association

between hearing loss and cognitive decline, researchers can identify promising avenues for early

intervention to mitigate the escalated cognitive decline that is observed alongside ARHL.
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